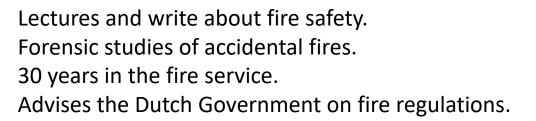
Furniture Fire Safety Seminar How to make sure that your sofa is fire safe?

Introductory remarks

Guillermo Rein

Professor of Fire Science, Imperial College London



9:30 – 10:00	REGISTRATION
10:00 – 10:10	INTRODUCTORY REMARKS FROM MODERATOR
	Guillermo Rein, Professor of Fire Science, Imperial College London
10:10 – 10:25	FIRE SAFETY OF UPHOLSTERED FURNITURE:
	THE VISION OF THE EUROPEAN FIRE SERVICES
	Rene Hagen, Professor of Fire Safety, Institute for Safety (IFV)
10:25 – 10:40	COMPARISON OF COUNTRY FURNITURE STANDARDS USING CORNER BURNS, FIRE
	SPREAD & SMOKE TOXICITY
	Matthew Blais, Director of Fire Technology, Southwest Research Institute (SWRI)
10:40 – 10:55	UNITING FIRE SAFETY, HEALTH AND CIRCULAR AGENDAS
	Pär Stenmark, Chief Regulatory Affairs Officer, IKEA Range & Supply
10:55 – 11:25	COFFEE BREAK
11:25 – 12:20	PANEL DISCUSSION AND Q&A WITH AUDIENCE
12:20 – 12:30	CONCLUDING REMARKS FROM MODERATOR
12:30 – 13:30	NETWORKING LUNCH

René R. Hagen
Professor of Fire Safety,
Institute for Safety (IFV)

Matthew Blais
Director of Fire
Technology, Southwest
Research Institute (SWRI)

Material research, fire testing, certification, and product development.
Served for many years in the USA military.

Also expert in counter-terrorism and chemical weapons.

Pär Stenmark
Chief Regulatory
Affairs Officer, IKEA
Range & Supply

Regulatory affairs of products, materials, innovation, production and distribution.

Quality, Technology and Forestry.

Development of the FSC forest certification scheme.

Focus is on sofas because together with mattresses, they are among the largest fuel load in residential fires worldwide.

"The Titanic complied with all codes. Lawyers can make any device legal, only engineers can make them safe"

Prof Brannigan, University of Maryland

Fire Engineering

Fire Engineers make the world safer from fire: protecting people, their property, and the environment.

Layers of Protection* (after Prof Drysdale):

- 1. Prevention**
- 2. Detection
- 3. Evacuation
- 4. Compartmentation
- 5. Suppression
- 6. Structural Resilience

Not all layers contribute equally or cost equal amounts, but **the single most important layer of protection is prevention (avoid the fire from taking place, disrupt the fire triangle)

^{*}Not all layers must be present in a building, but all must be considered as least.

Fire Safety of upholstered furniture: The vision of the European fire services

René R. Hagen

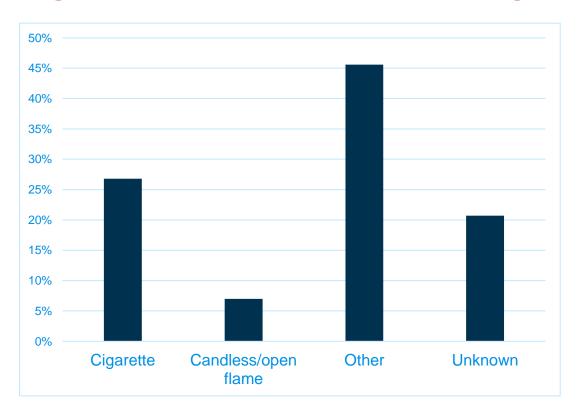
Professor of Fire Safety, Institute for Safety (IFV)

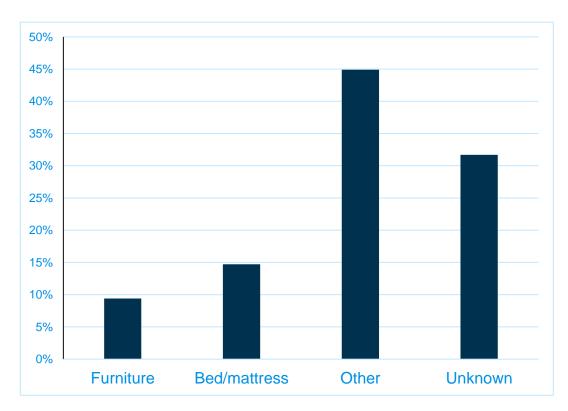
Fire safety of upholstered furniture The vision of the European Fire Services

European Fire Safety Week René Hagen, Professor of Fire Safety Brussels, 21th November 2019

The vision of the European Fire Services

Don't focus on the behavior of the components but look at the performance of the end-useproduct and prevent the foam fillings to catch fire.



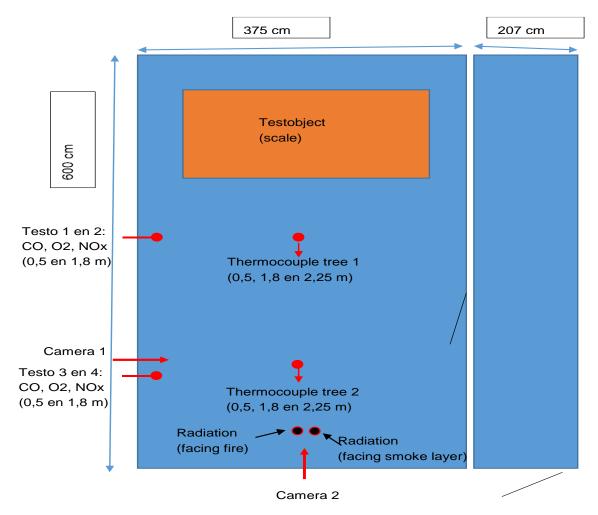

Fatal fires in the European Union

- Yearly about 6.000 fatalities due to fires
- ▶ 80 90% of the fatalities in the domestic area
- At least 25% of these fatal domestic fatalities are caused by the flammability of upholstered furniture and mattresses

Ignition source and origin of fire

Ignition source (N=2293)

Origin of fire (N=1566)



Assignment given by the Federation of the European Union Fire Officer Associations (FEU)

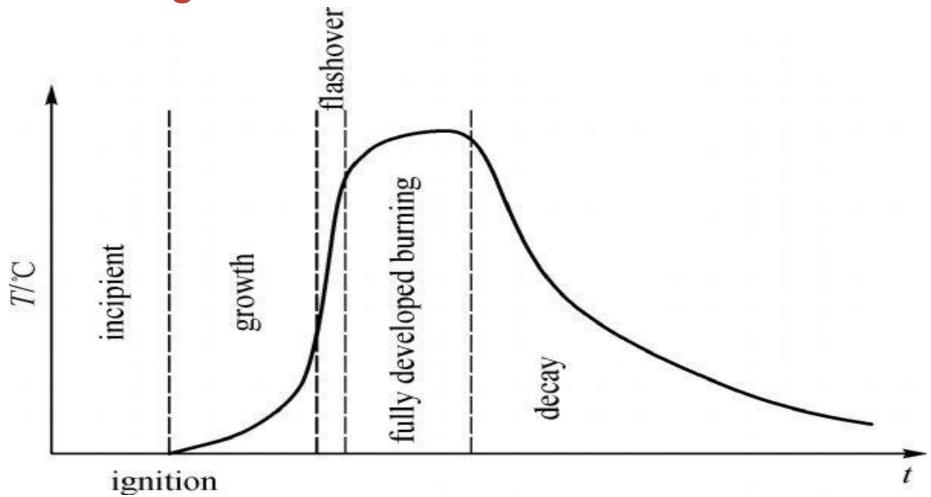
Define and determine a set of (existing or modified) testing methods, which fire departments throughout Europe deem necessary in order to increase survivability and escape capabilities during domestic fires. The test methods have to be widely applicable to upholstered furniture, regardless of the material, and should serve as input towards manufacturers, suppliers and (legal) regulations and standards.

Impression tests

Impression tests

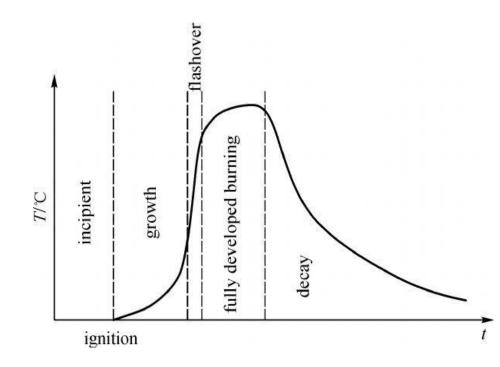
Results impression tests

- Products can resist a smouldering cigarette
- Products ignite when a small open flame or crib 5 is used as ignition source
- Temperature is high enough to, in case of enough oxygen, cause a flashover
- As soon as the objects ignite, temperature is the defining parameter for the possibility of escape as well as the chance of survival



Relevante brandscenario's (NFPA)

- 1. Cigaret ignition scenario: smoldering ignition by burning tobacco product
- 2. Open flame ignition scenario: ignition by an open flame from another fire, where the furniture or mattress makes the largest contribution to the fire spread, but is not the first object that burns
- 3. Ignition scenario due to arson or heat-generating equipment
- 4. Small open flame ignition scenario: ignition by candle, match or lighter
- 5. Smoldering ignition scenario: ignition by smoldering object


Fire stages

Conclusions/recommendations

- Both phase 1 and phase 2 contribute to the chances of survival
- In phase 2, other factors that cannot be tested play a role (ventilation, location of object in room)
- Focus is on phase 1: prevent ignition of the foam filling

Result research in report, leaflet and article

Fire safety of upholstered furniture and mattresses in the domestic area

European fire services recommendations on test methods

Distribution of FEU research Fire safety of upholstered furniture and mattresses in the domestic area

It is estimated that every year 1000 people are killed in the European Union in a residential fire where the flammability and smoke production of upholstered furniture and mattresses were decisive for the fatal consequence of the fire. For the FEU, this was the reason to start an investigation about this matter. The results are presented in the report Fire safety of upholstered furniture and mattresses in the domestic area.

Attention to broader target group

The research appears to provide a turning point in thinking about the possibilities and impossibilities of realizing fire-safe furniture and mattresses. It also provides a strong impulse for finding solid solutions for this important fire safety problem. In order to reinforce this development, it is necessary to bring the research to the attention of a broader target group. It has therefore been agreed that all members of the FEU will actively communicate about the research in their country.

Article with summary of the report

You can use the article Fire-study to increase the fire safety of furniture, which is a summary of the research, for dissemination. This article can be found on the attached USB stick and is available in English, German, French and Dutch. The complete report and the test report Impression tests upholstered furniture and

mattresses belonging to the report, can also be found on the USB stick. If you require the article in a different language, you can translate it to the preferred language.

Target groups and communication channe

We were thinking about the following target groups: legislators, policy makers, standardization institutes, consumers and producers and suppliers of furniture and mattresses.

Possible channels that can be used for dissemination are your own website (s) and social media. Additionally, we advise you to generate free publicity through relevant external websites, trade media and general

Questions

If you have any questions about the research, you can consult the flyer with Q & A's.

Verspreiding FEU-onderzoek Fire safety of upholstered furniture and mattresses in the domestic area

Naar schatting komen in de Europese Unie jaarlijks 1000 mensen om het leven bij een woningbrand waarbij de brandbaarheid en rockpreductie van bekleed meubliair en matrassen doorslaggevend waren voor het fatale gevolg van de brand. Dit was voor de FEU reden om hiernaar een onderzoek te starten. De resuttaen zijn gepresenteerd in het rapport Fire safety of upholstered furniture and mattresses in the domestie area.

Aandacht bij bredere doelgroep

Het onderzoek blijkt te zorgen voor een kentering in het denken over de mogelijkheden en onmogelijkheden van het realiseren van brandveiliger bekleed meubilair en matrassen. Ook geeft het een stevige impuls aan het vinden van solde oplossingen voor dit belangrijke brandveiligheidsprobleem. Om deze ontwikkeling kracht bij te zetten, is het noodzakelijk om het onderzoek bij een bredere doelgroep onder de aandacht te brengen. Afgesproken is dan ook dat alle leden van de FEU in hun land actief gaan communiceren over het onderzoek.

U kunt hiervoor gebruikmaken van het artikel

Skint, mer voir geutunisanen van it is a trikes Parandwererstudie wii brandweiligheid van meubels vergroten, dat een samenvatting is van het onderzoek. Dit artikel staat op de bijgevoegde usb-stick een insis. Sook het rapport zelf en het bij het rapport behorende testrapport Impression tests upholstered furniture and mattresses staan op de usb-stick. Heeft u het artikel in een andere taal nodig, dan kunt u het uiteraard laten verzalen.

Doelgroepen en communicatiekanalen

Qua doelgroepen denken we aan: wetgevers, beleidsmakers, normalisatie-instituten, producenten en leveranciers van meubilair en matrassen, en consumenten.

Mogelijke kanalen zijn uw eigen website(s) en social media. Verder adviseren wij u om free publicity te genereren via relevante externe websites, vakmedia en algemene media.

Vragen?

Raadpleeg voor vragen over het onderzoek de flyer met Q&A's.

Recommandations ignition sources

By **preventing ignition of the foam** of upholstered furniture and mattresses, the survivability and possibility of escape from dwelling fires will increase. Domestic furniture and mattresses should be able to prevent this ignition with different ignition sources on the enduse-product:

Cigarette ignition test. This is the most important because it covers the most common ignition scenario's

Ignition by a small open flame. This is also important because it covers more ignition scenarios than those covered by the cigarette test

Open flame ignition by a wooden crib. This covers larger ignition scenarios than the small open flame test

Performance of the end-use product

By introducing requirements to prevent ignition of upholstered furniture and mattresses, the focus must be on preventing **the foam filling to ignite** (or burn very slowly).

The current regulations (e.g. USA, UK, Russia) are to much focused on the testing of components (even in end-use situation). That blocks innovative solutions s.a. interliners and alternatives for foam fillings.

Conclusion and advise

Don't focus on the behavior of the components but look at the performance of the end-useproduct and prevent foam fillings to catch fire.

Thank you for your attention!

Comparison of country furniture standards using corner burns, fire spread & smoke toxicity

Matthew Blais

Director of Fire Technology, Southwest Research Institute (SWRI)

Comparison of Country Furniture Standards Using Room Corner Burns Fire Spread and Smoke Toxicity

Dr. Matthew S. Blais

Department of Fire Technology

Southwest Research Institute

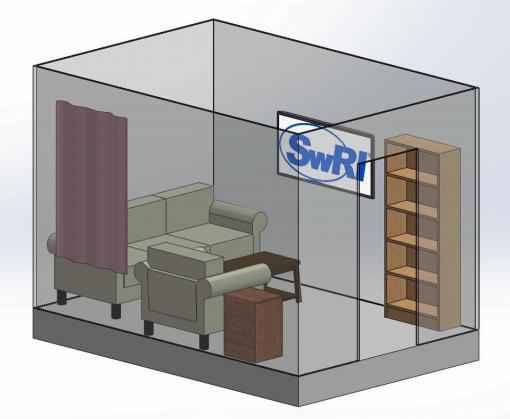
Outline

- Introduction and Background
- Hypothesis
- Experimental
- Heat Release and Smoke Generation Results
- Smoke Timing and Chemistry
- Smoke Acute Toxicity
- Conclusions

Introduction

- Controversy over Fire Retardants and whether they are effective or needed
- Controversy over the quantity and toxicity of smoke for FR protected furnishings
- Controversy related to the blooming of FR and environmental exposure in the home
- Controversy over open flame ignition requirement in standards
- This study is designed to provide data that will add to the discussion.
- Comparison of US standards (Cal TB117,smoulder only) French Standards (EN 1021-1, inflammable covering, smoulder only) and English (BS 5852 crib 5, open flame)

Hypothesis

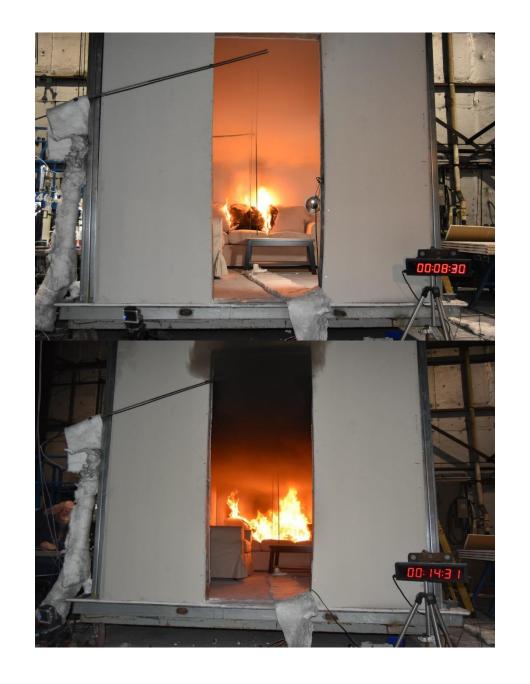

• H1 - Country fire codes for furniture and Electrical Equipment affect their performance in fires

 H2 - Smoke is more acutely toxic from furniture containing fire retardants

• H3 - Fire retardant materials produce more smoke

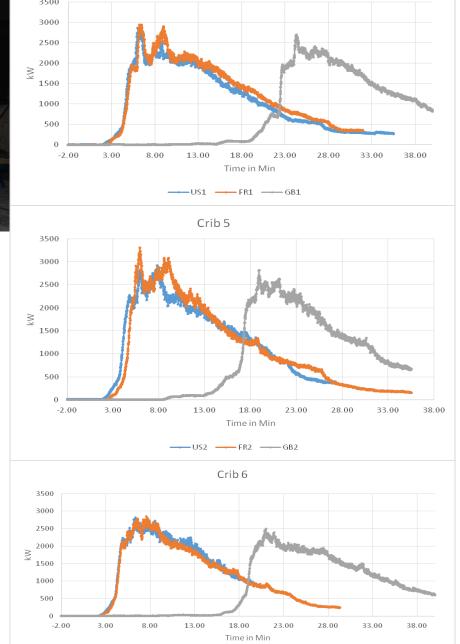
- ISO 9705 Rooms
- Furnished with:
 - 3 cushion couch, chair, Flat Panel television 55 inch, coffee table, book case w/20 lbs of books, curtains and end table
 - All pieces identical for each room except country of origin (England France, US)
 - Focus Couches, chairs and televisions
 - Room arranged exactly the same within ±1.0 cm

- Ignition source from BS 5852:
 - Crib 4 ≈ 125 W
 - Crib 5 ~ 250 W
 - Crib 6 ~ 900 W
- Crib Placement
- Analytical
 - Oxygen consumption Calorimeter
 - Smoke light path obscurationdispersion
 - Video evidence Infra-Red and HD

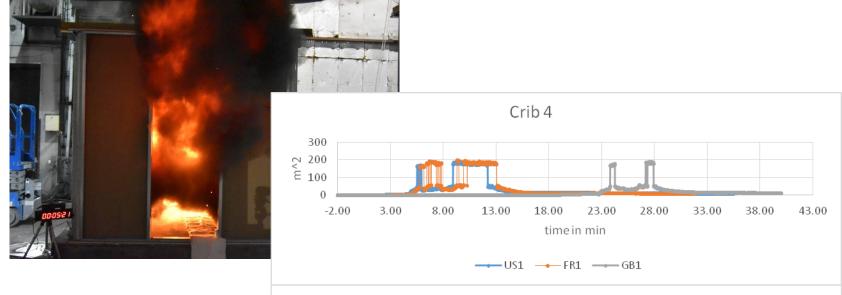

- Analytical Cont.
 - PAH sampling XAD cartridge
 - Chloro and Bromo Dioxin/Furans XAD cartridge
 - SVOC XAD cartridge
 - VOC Summa Cannister
 - Total Smoke Impingers (for latter studies)
 - Sampling at 2 SLPM for 2 min
 - Acid and Narcotic gasses FTIR scanned every 9 seconds
 - Sampling location: center room at 0.5 m and 10 cm below door frame.

- Total of 9 room burns
 - 3 of each country source
 - 1 of each country ignited with crib 4, 5 and 6
 - All ignited on the central cushion in contact with the back cushion

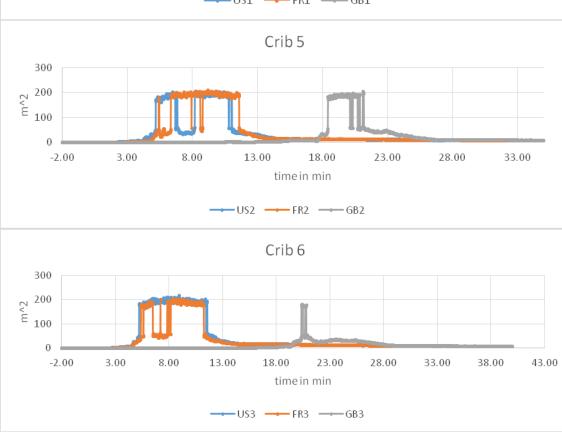
- Analytical collection sequence
 - FTIR, total smoke, HRR, Smoke opacity – continuous over duration of fire
 - Crib 4 test of all 3 configurations continuous over duration of fire
 - Crib 5 and 6 sample collected during white smoke period.
 Sample collected during black smoke period.


Comparative Burn Crib 4 Ignition all Three Countries

Heat Release Rate



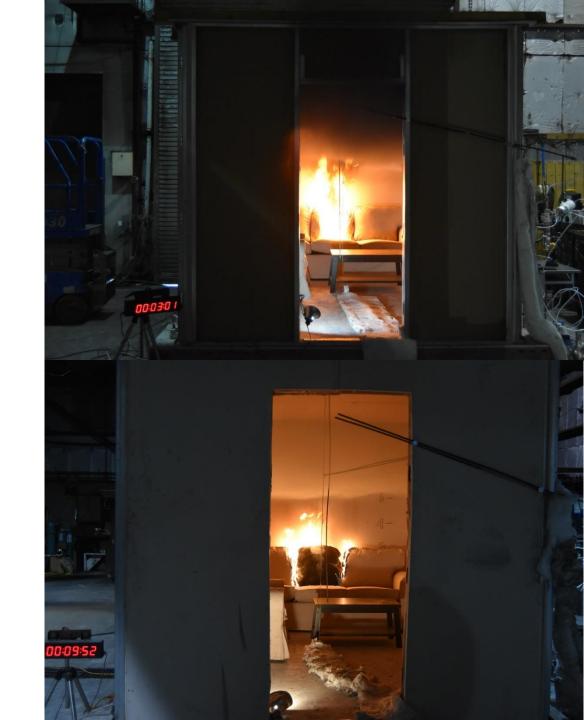
- Ignition starts at time zero, plots show 2 min baseline measurements as -2.00 min to time zero.
- Time to Flashover significantly and repeatedly delayed for English furnishings, 17 to 22 min
- US and French furnishings reach flashover very quickly, 4 to 5 min.



——US3 ——FR3 ——GB3

Smoke Production

- Opacity is significantly delayed in English furnishing and of shorter duration
- French and US furnishings virtually identical and very quick under all three ignition conditions

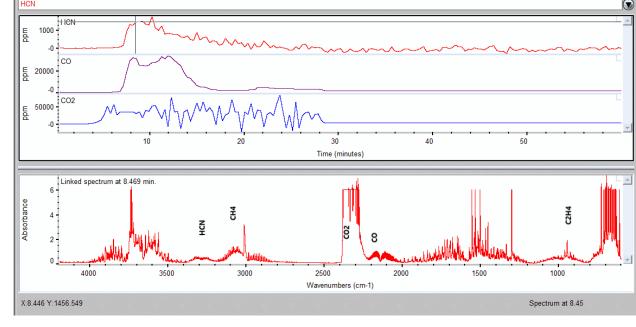

HRR and Smoke DATA

- French furnishings had highest heat and smoke number but was closely followed by the US
- English furnishings produced half the total smoke, lower pHRR and >4X longer times to Flashover
- English Furnishing reached flashover with crib 4 and 5 which was unexpected

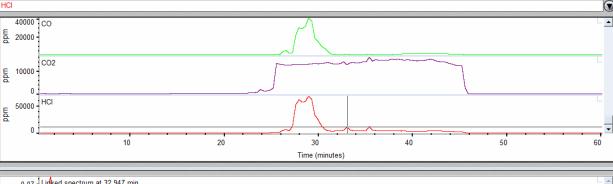
				Sumn	nary Smoke	and Heat Data	a from all 9	Tests		
•				Total	Max	time to	total	allost Flow	time to	
•	Test	pHRR kW	time to	heat MJ	Smoke m ² /s	Max Smoke	Smoke m ²	pHeat Flux at floor kW/m ²	peak heat flux min:s	Flashover min:s
	US1	2890	6:24	2134	191.5	9:36	62975			5:00
	US2	2922	7:49	2107	204.6	9:54	70517	121.1	13:23	5:00
	US3	2811	6:21	1800	216.1	9:00	85362	220.3	10:56	4:20
)	US Average	2874	6:51	2014	204.1	9:30	72951	170.7	12:09	4:46
	GB1	2690	24:19	1892	189	27:44	33734			22:37
	GB2	2822	21:09	1899	204.1	21:09	45196	221.5	23:28	17:10
	GB3	2499	21:00	1909	181	20:25	24061	122.2	24:08	19:07
	GB Average	2670	21:04	1900	191.4	21:09	34330	171.8	23:28	19:38
	FR1	2941	6:29	2300	197.6	9:22	72561	117.1	14:47	5:00
1	FR2	3307	5:56	2278	209.3	9:11	79664	199.1	11:19	4:49
	FR3	2848	7:34	2011	202.8	8:20	72101	219.1	10:32	5:00
	Fr Average	3032	6:39	2196	203.2	8:57	74775	178.4	12:12	4.:56

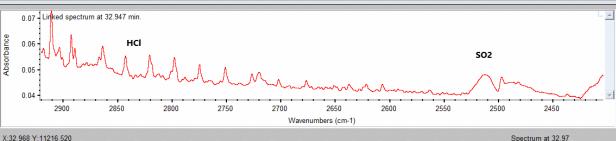
Smoke Characteristics

- Time to transition of white or light smoke to heavy black smoke
 - English occurs at 17 to 19 minutes
 - French occurs 3 to 4 minutes
 - US occurs 3 to 4 minutes
- White and black smoke separately characterized for 6 of 9 trials.



Smoke Analysis - FTIR


Chemical	GB cent Rm	GB Door	FR Cent Rm	FR Door	US Cent Rm	US Door
HCN	ND	1029 ppm	ND	1234 ppm	ND	1600 ppm
		21.1 min		6.1 min		6.0 min
SO ₂	510 ppm	646 ppm	588 ppm	2300 ppm	639 ppm	3300 ppm
	29.9 min	29.9 min	13.9 min	13.5 min	13.5 min	13.2 min
СО	18,200	18,000	31000 ppm	28000 ppm	60800 ppm	38200 ppm
	ppm 23.9	ppm 23.0	12.2 min	6.2 min	8.2 min	8.8 min
	min	min				
NH ₃	ND	ND	ND	2500 ppm	ND	2743 ppm
				8.0 min		8.4 min
Methane	1094 ppm	1703 ppm	1334 ppm	31815 ppm	1426 ppm	1928 ppm
	23.7 min	23.3 min	9.7 min	8.0 min	10.1 min	7.8 min
Ethylene	378 ppm	818 ppm	693 ppm	1887 ppm	993 ppm	2033 ppm
	23.7 min	23.3 min	9.4 min	8.0 min	9.8 min	7.8 min
CO ₂	13330 ppm	87930 ppm	12480 ppm	33600 ppm	14700 ppm	95200 ppm
	23.7 min	27.4 min	7.8 min	11.1 min	9.9 min	15.2 min
H ₂ O	19310 ppm	82270 ppm	17510 ppm	79100 ppm	28500 ppm	76900 ppm
	24.0 min	25.4 min	9.9 min	11.3 min	9.9 min	11.9 min
HCI	65 ppm	ND	ND	ND	ND	ND
	23.9 min					


- FTIR shows French Test gets acutely toxic very quickly, starting at 6 min and ending at 12 min, CO and HCN
- English test #1 acute toxicity significantly delayed, starting at 21 min, lower than both US and French
- HCl false positive due to high hydrocarbons, but detected at low levels at 32 min in the English test #1
- SO2 detection for all rooms late in the fire from wood combustion

French test #1

English test #1

Smoke Analysis VOC

Chemical Name/ppb v/v	GB1	GB2	GB3	GB1 Flashover	GB2 Flashover	GB3 Flashover	US1	US2	US3	US1 Flashover	US2 Flashover	US3 Flashover F	R1 FR	2 FR	R3	FR1 Flashover	FR2 Flashover	FR3 Flashover
PROPENE	48	0 2	24 226 D	L 3950 D	L 1060	204	31	3 182	10.8	6640 D	L 37800 DL	1150 DL	115	173	202 DI	53900 D	L 38	4200 DL
CHLOROMETHANE	2.8	5 N	D 46 d	ll NE	240	88	3 14!	5 ND	0.941	NI	1680 DL	ND	ND	ND	41.9	9 13400D	L N	1850 DL
VINYL CHLORIDE	0.61	2 N	D 3.46	6 NI	68.3	NE) NI	O NE	ND	NI	ND ND	ND ND	ND	ND	NE	90	23.3	2 1.74
1,3-BUTADIENE	61.2 D	DL 58	.7 58 D	L N	O NE	38.8	B NE	28.6	1.01	NI	D ND	ND ND	21.7	39.2	38.4	4 6610 D	L N	2130 DL
BROMOMETHANE	N	D N	D 12	2 21.3	2 ND	NE) NI	O NE) ND	NI	136	19.2	ND	ND	31.4	36:	2 13.8	4.58
ETHANOL	99 D	DL 45	.4 13.2	2 NI	170 DI	. NE) NI	O NE	ND	NI	231	. ND	3880 DL	19.3	23	3 NE	716 D	L 14.6
ACROLEIN	59	3 1	6 128	8 609 D	L 1360	NE NE	56:	1 70.8	ND	96	7720	1350	ND	64.7	118 D	l 699	0 19	5 ND
ACETONE	26	7 10	04 70.5	5 843 D	L 842 DI	. 524 DI	420D	L 94.1	25.7	953 D	L 4450	1420	78.3	55.8	150 DI	74500 D	L 849 D	L 1500 DL
ISOPROPANOL	16	1 5:	.9 311 D	L 6850 D	L 413	NE	396 D	L 2820	35.6	3160 D	1150 D	1200	717000 DL	510	1180 DI	1090000 D	L 791 D	3290 DL
CARBON DISULFIDE	N	D N	D 3.87	7 209 D	L 23.4	NE	77.6 D	L NE	ND	39.3	3 777 DL	591	ND	ND	NE	23:	2 466 D	L 5.14
VINYL ACETATE	N	D 44	.2 NE	O NE	222	. NE	80.	7 NE	ND	54.	4 ND	224	ND	ND	NE) NI	O NI) ND
2-BUTANONE	24	1 !	55 40.4	4 NE	129	NE	19.4	4 3.65	4.42	21.8	377	52	ND	4.11	7.21	ı NI	O NI) ND
BENZENE	98	2 2!	57 164	4 71000 D	L 10100 DI	. 33500 DI	961	0 841	20.9	36300 D	L 50300 DL	10800	2860 DL	1750	4350 DI	L 140000D	L 17700 D	L 512000 DL
1,2-DICHLOROPROPANE	N	D N	D 2.69	9 NI	27.8	NE) NI	O NE) ND	NI) ND	ND ND	ND	ND	NE) NI	O NI	D ND
1,4-DIOXANE	52.30)I 9.4	4.9	7 NE	15.9	NE NE) NI	O NE	ND	NI) ND	ND ND	ND	ND	NE) NI	O NI) ND
METHYL METHACRYLATE	2.2	9 N	D NE	625 D	L 1850 DI	. NE	621 D	L NE	ND ND	883 D	L 3320 DL	2080	ND	ND	NE	12:	3 2960 D	L 2220 DL
TOLUENE	95.9 D	L 30	.7 12.9	9 1960 D	L 472	122	2 38	39.9	2.19	1560 D	L 3370 DL	307	23.9	89.9	101	1 32800 D	L 31	9790 DL
CHLOROBENZENE	N	D N	D 1.5	5 NI	O NE	NE) NI	O NE	ND	17.	4 53.5	ND ND	ND	ND	NE	13:	2 5	1 6.13
ETHYLBENZENE	15.6 D	DL 3.0	59 NE	20.0	31.9	NE NE	18.0	6 5.42	0.971	138	952	13.9	ND	8	4.66	5 1040	O NI	7.82
M/P-XYLENE	13.7 D	DL 3.3	33 NE	19.8	3 19	NE NE) NI	O NE	3.27	10:	1 565	13.8	ND	3.34	3.94	1020	O NI	40.9
STYRENE	21.	5 8.3	34 NE	28.:	1 50.1	. 53.2	2 47.9	9 23.7	0.906	34.	7 499	ND ND	ND	44.6	42.7	7 206	O NI	2700 DL
O-XYLENE	4.1	3 N	D NE	O NE	O NE	NE) NI	O NE	1.06	66.3	2 199	ND ND	ND	ND	NE	418	8 NI	14.4
NAPHTHALENE	28	8 18	.7 15.:	1 27:	1 146 DI	. 2260	1340	0 136	5 10.5	295 D	L 2420 DL	3570	39.3	69.4	16400 DI	L 47200 D	L 469	9 4800 DL

- Units of measurement are ppb v/v
- All of the white smoke measurements have very low levels, post flashover-black smoke much higher levels
- Monomers prevalent, fragment of FR, aromatic and PAH
- Acrolein higher in non fire resistant systems

Smoke Analysis SVOC / PAH

Sample ID	GB2 SVOC White	GB3 SVOC White	GB2 SVOC Black	GB3 SVOC Black
Compound	micrograms/m³	micrograms/m ³	micrograms/m ³	micrograms/m³
Phenol	ND	421	500	155
Naphthalene	ND	1684	10400	6667
2-Methylnaphthalene	ND	ND	106	ND
Acenaphthylene	ND	189	1800	1176
Dibenzofuran	ND	ND	78	ND
Fluorene	ND	ND	68	ND
Phenanthrene	ND	ND	520	145
Anthracene	ND	ND	62	ND
Fluoranthene	ND	ND	194	67
Pyrene	ND	ND	260	143
Acetophenone	ND	97	174	63

Sample ID	US2 SVOC White	US3 SVOC White	US2 SVOC black	US3 SVOC Black *
Compound	micrograms/m ³	micrograms/m ³	micrograms/m³	micrograms/m³
Pyridine	ND	ND	949	471
Phenol	ND	590	385	276
Naphthalene	ND	6800	69231	16176
2-Methylnaphthalene	ND	ND	1256	106
Acenaphthylene	ND	460	4615	824
Dibenzofuran	ND	ND	564	126
Fluorene	ND	ND	410	ND
Phenanthrene	ND	ND	2821	ND
Anthracene	ND	ND	513	ND
Fluoranthene	ND	ND	1103	ND
Pyrene	ND	ND	1179	ND
Benzo[a]anthracene	ND	ND	190	ND
Chrysene	ND	ND	241	ND
Benzo(b)fluoranthene	ND	ND	231	ND
Benzo[a]pyrene	ND	ND	238	ND
Indeno[1,2,3-cd]pyrene	ND	ND	156	ND
Benzo[g,h,i]perylene	ND	ND	185	ND

Smoke Analysis - SVOC

Sample ID	FR2 SVOC Black	FR3 SVOC black	FR2 SVOC White	FR3 SVOC White*
Compound	micrograms/m ³	micrograms/m³	micrograms/m³	micrograms/m³
Pyridine	3167	767	ND	1438
Aniline	400	ND	ND	171
Phenol	4833	6333	ND	375
m-cresol & p-cresol	317	533	ND	-
Naphthalene	141667	18333	173	35417
2-Methylnaphthalene	1917	500	ND	396
Acenaphthylene	16667	3500	ND	2500
Dibenzofuran	492	ND	ND	229
Fluorene	700	ND	ND	185
Phenanthrene	4500	2000	ND	1854
Anthracene	700	ND	ND	333
Fluoranthene	1667	2000	ND	875
Pyrene	1917	2167	ND	1104
Benzo[a]anthracene	208	600	ND	115
Chrysene	242	717	ND	156
Benzo(b)fluoranthene	292	867	ND	138
Benzo[a]pyrene	342	750	ND	125
Indeno[1,2,3-cd]pyrene	233	600	ND	73
Benzo[g,h,i]perylene	292	583	ND	110
Acetophenone	267	- ND	ND	ND

- English Furnishings lower molecular weight and lower concentration of PAH
- French Furnishings had the highest quantities of more toxic PAH in the black smoke, FR3 transition to black smoke was very fast causing the FR3 white sample to capture some black smoke.
- US3 suffered a line blockage during the black smoke collection giving lower concentration of Fewer PAH.

Smoke Analysis – Chloro Dioxin/Furan

	18-311 FR1 Dioxin tota	al	18-313 FR2 Dioxin W	hite Smoke	18-317-GB2 Dioxin Bla	ck Smoke	18-319-FR3 Dioxin W Smoke	hite
Compound								
	Conc. (Tot. pg)	Qual	Conc. (Tot. pg)	Qual	Conc. (Tot. pg)	Qual	Conc. (Tot. pg)	Qual
	ND	ND			ND	ND	ND	ND
2,3,7,8-TCDD			20.7	ND				
	ND	ND			ND	ND	ND	ND
1,2,3,7,8-PeCDD			4.02	J				
	ND	ND			ND	ND	ND	ND
1,2,3,7,8,9-HxCDD			12.7	J				
					ND	ND	ND	ND
1,2,3,4,6,7,8-HpCDD	8.71	J	9.76	J				
OCDD	26.2	J	11.1	J	ND	ND	23.1	J
	ND	ND					ND	ND
2,3,7,8-TCDF			6.02	J	5.63	J		
	ND	ND			ND	ND	ND	ND
1,2,3,7,8,9-HxCDF			2.85	J				
	ND	ND			ND	ND	ND	ND
2,3,4,6,7,8-HxCDF			3.36	J				
1,2,3,4,6,7,8-HpCDF	ND	ND	7.43	J	ND	ND	7.45	J
1,2,3,4,7,8,9-HpCDF	ND	ND	10.6	J	ND	ND	9.70	J
OCDF	ND	ND	15.2	J	ND	ND	22.3	J

Smoke Analysis –Bromo Dioxin/Furan

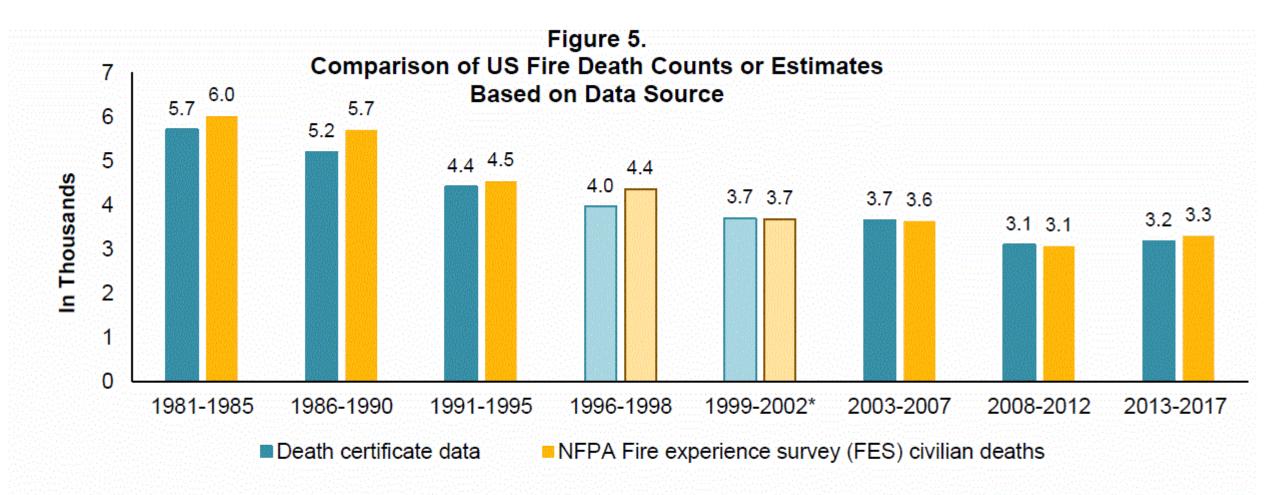
	18-317- GB2 DIOXIN BLACK		18-317- GB2 DIOXIN	WHITE	18-317- GB3 DIOXIN BLACK		18-317- GB3 DIOXIN WHITE	
Total pg	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
123478/123678-HxBDD	4.02	J	ND	ND	4.1	J	ND	ND
1234678-HpBDD	12.2	J	ND	ND	10.6	J	ND	ND
OBDD	ND	ND	ND	ND	ND	ND	ND	ND
2468-TBDF	ND	ND	ND	ND	ND	ND	ND	ND
23478-PeBDF	ND	ND	1.752	J	ND	ND	ND	ND
123478-HxBDF	4.54	J	ND	ND	ND	ND	ND	ND
1234678-HpBDF	15.96		8.6	J	ND	ND	4.84	J

	118-317-US3 DIOXIN WHITE		18-310-US2 DIOXIN B	BLACK 18-310-US1 DIOXI		N	18-317- US3 DIOXIN BLACK	
Total pg	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
123478/123678-HxBDD	ND	ND	ND	ND	ND	ND	ND	ND
1234678-HpBDD	8.98	J	11.66	J	11.56	J	ND	ND
OBDD	ND	ND	ND	ND	ND	ND	ND	ND
2468-TBDF	ND	ND	ND	ND	1.012	J	ND	ND
23478-PeBDF	ND	ND	ND	ND	ND	ND	ND	ND
123478-HxBDF	3.78	J	3.48	J	ND	ND	ND	ND
1234678-HpBDF	7.82	J	ND	ND	ND	ND	6.66	J

=	18-313 FR2 DIOXIN LIGHT SMOKE		18-313 FR2 DIOXIN Black Smoke		
Total pg	Conc	Qual	Conc	Qual	
123478/123678-HxBDD	ND	ND	ND	ND	
1234678-HpBDD	7.48	J	ND	ND	
OBDD	ND	ND	ND	ND	
2468-TBDF	ND	ND	1.26	J	
23478-PeBDF	ND	ND	ND	ND	
123478-HxBDF	ND	ND	ND	ND	
1234678-HpBDF	3.42	J	5.02	J	

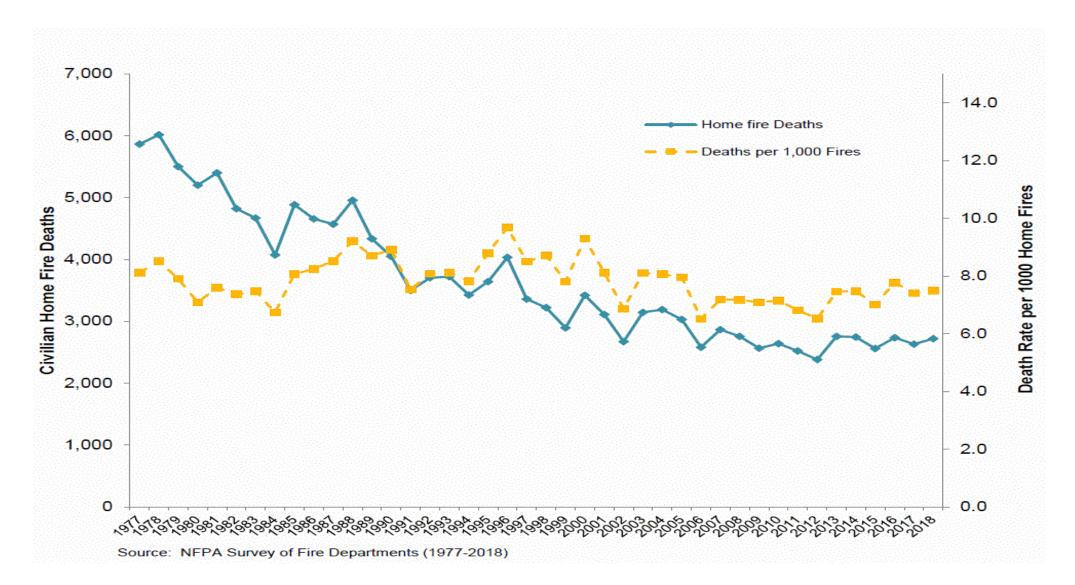
Conclusions

H1 - Country fire codes for furniture and Electrical Equipment affect their performance in fires: the furniture standard in England (BS5852) is significantly more protective than that in the US or France. Escape time is significantly increased, >4X. Performance of French and US furnishings are approximately the same with very short flashover times resulting from a small open flame ignition source.


H2 - Smoke is more acutely toxic from furnishing containing fire retardants: this hypothesis is false, the smoke generated in the French and US furnishing which did not indicate FR produced more and more acutely toxic smoke then the English furnishing as seen in the CO HCN concentration profiles. Chronic toxicity was evaluated in this study but smoke samples were collected and saved for a follow-on toxicity study.

H3 - Fire retardant materials produce more smoke: this hypothesis is false, the more highly protected English furnishings produced less than half of the smoke produced for te French and US furnishings. Both the heat and smoke production were also significantly delayed. Multiple replicates of the each furnishing configuration were tested with increasing ignition energy. The results were very consistent within each country source.

Ignoring or eliminating open flame ignition sources from furniture and electronics equipment decreases their safety by reducing their resistance to ignition.


Note: Crib 5 appears to present a bigger ignition threat in this scenario then crib 6 possibly due to geometry

Impact of Fire Code Change in US

Does not include the fatalities from the events of September 11, 2011.

Impact of Fire Code Change in US

Uniting fire safety, health and circular agendas

Pär Stenmark
Chief Regulatory
Affairs Officer, IKEA

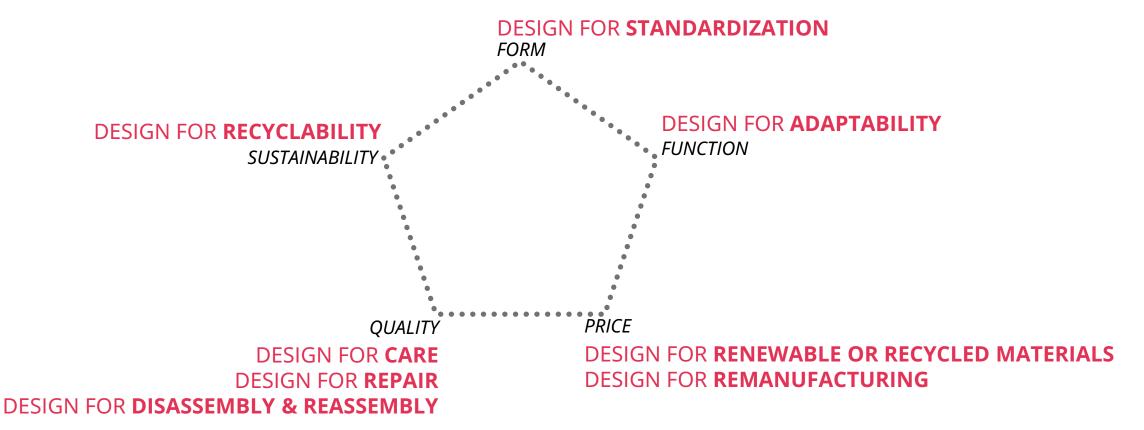
Range & Supply

Uniting fire safety, health, and circular agendas

Pär Stenmark, Chief Regulatory Affairs Officer IKEA Range & Supply

Our vision
To create a better every day life
for the many people

Product safety



Designing for the future

Coffee Break

Panel discussion and Q&A

Guillermo Rein

Professor of Fire Science, Imperial College London

René R. Hagen Professor of Fire Safety, Institute for Safety (IFV)

Matthew Blais

Director of Fire Technology, Southwest Research Institute (SWRI)

Pär Stenmark

Chief Regulatory Affairs Officer, IKEA Range & Supply

Concluding remarks

Guillermo Rein

Professor of Fire Science, Imperial College London

Networking Lunch

Furniture Fire Safety Seminar How to make sure that your sofa is fire safe?

