Fires in electric vehicles

European Fire Safety Week 2024 November 21, 2024

4a. Webinar: Overcoming the challenges with the fire safety of BEVs in Covered Car Parks: Guidelines and Best Practices | Online 10h00 - 11h30 (CET)

Jonna Hynynen and Magnus Arvidson* RISE Research Institutes of Sweden

*) Presenter

Outline

- Sources (projects) for the information.
- Frequency of fires in electric vehicles (EVs) vs. internal combustion engine vehicles (ICEVs).
- Fire load and its main contributors.
- Fire sprinkler protection of EVs vs. ICEVs.
- Smoke toxicity and environmental consequences.
- Fire protection challenges and measures.

Summary of results from several RISE led projects

- **BREND** (2017-2019)
- E-TOX (2019-2020)
- BREND 2.0 (2020-2022)
- Safe and SuitableFirefighting (2020-2022)
- E-TOX 2 (2021-2022)
- ACEA: Electric Vehicle
 Fire Safety in Enclosed
 Spaces (2022)

- LASH FIRE (2019-2023)
 - Manual firefighting of BEV
 - Screening and management of AFV
 - Safe BEV charging onboard
 - Early detection of BEV fire/hazard
 - Early BEV fire suppression on vehicle carriers
 - Evaluation of prescribed drencher systems on BEV

Increased knowledge on battery and EV fire safety

Frequency of EV fires

Туре	Total fires	Fires per 100k vehicles
Petrol/ diesel	200 000	1 500
Battery electric	50	25

Data on car fires from the NTSB (Nov 2022), vehicle sales data from the BTS. https://www.carsmetric.com/electric-car-fire-statistics/

Why vehicle fires?

- Arson
- Engine compartment
- Overheated brakes

Fires per billion miles travelled ICEV 55

EV 5

Electric Vehicle Fire Safey in Enclosed Spaces

- Fire frequency in Norway:
 - EV population 2022: 17.3%
 - EV fires (2016-2022): 2.3%
 (slight trend decline since 2018)
 - A factor 8 less common to have a fire in an EV compared to an ICEV
- Fire frequency in Sweden: Lower relative frequency of EV fires by a factor ~10.

Project report: Electric Vehicle Fire Safety in Enclosed Spaces

Fires in Electric Vehicles

Where is the fire?

- Wheel house
- Engine compartment
- Passenger compartment
- Battery

→ Most fires do not start in the battery

Fire load vehicle fires

Fire growth rate

Peak heat release rate

Total energy released

Not faster or higher for battery electric vehicles

Project report: E-TOX: <u>Toxic Gases from Fire in Electric Vehicles</u>

Total heat release ICEV and BEV 3 - 10 GJ

Modern vehicles

New materials and increased size and width

Increased use of plastics compared to steel in vehicles

Project reports:

E-TOX: Toxic Gases from Fire in Electric Vehicles

E-TOX 2: Investigation of extinguishing water and combustion gases from vehicle fires

Fire spread

Exterior plastic components can be ignited by an irradiance level of 20 kW/m² in 7.5 minutes, whereas it takes less than one minute with an irradiance level of 30 kW/m². The ignition of tires takes longer time (18 and 10 min respectively). Wind conditions and distances between cars will influence the time to ignition.

References: Fire spread in car parks, BRE, 2010

Figure 19. Simulation of near-standing automobile ignition: the case of 45 cm distance between automobiles and 2 m.s⁻¹ air flow velocity in the 0th, 120th, 300th and 465th s of fire

	0 m.s ⁻¹	0.5 m.s ⁻¹	1 m.s ⁻¹	2 m.s ⁻¹	3 m.s ⁻¹
15 cm	304 s	251 s	185 s	137 s	107 s
30 cm	384 s	327 s	254 s	193 s	167 s
45 cm	494 s	441 s	348 s	288 s	268 s
60 cm	-	-	474 s	407 s	389 s
75 cm	-	-	-	575 s	-

Table 1. Time of the third automobile ignition for different distance and air flow velocity values

 $\label{eq:local_problem} \textit{Halada L. et al., Advances in Modeling of Fluid Dynamics, chapter 9, 2012}$

Can BEV fires be extinguished?

An initiated thermal runaway **CANNOT** be extinguished from the outside. Stopping the thermal runaway requires cooling - very ineffective from outside the battery.

Propagation to undamaged cells **CAN** be hindered/slowed down, if sufficient cooling is provided – but this is difficult with current vehicle/battery designs.

Important to prevent fire spread <u>between</u> <u>vehicles</u> to reduce the risk of severe consequences.

Fire sprinkler system tests

- Comparison of the fire suppression performance of sprinkler systems in large-scale fire tests with BEVs and ICEVs.
- Four tests: Two + two geometrically similar vehicles of both types.
- Fire started in either fuel spill or in battery pack.

Work by: Magnus Arvidson & Örjan Westlund RISE (magnus.arvidson@ri.se)

Results

Arvidson, M., Westlund, Ö. Water Spray Fire Suppression Tests Comparing Gasoline-Fuelled and Battery Electric Vehicles. Fire Technol 59, 3391–3414

Sprinkler setup: Four nozzles, spacing 3.05 m by 3.05 m with a water discharge density of 10 mm/min (total: 372 L/min)

Smoke toxicity

E-TOX 2019-2020

E-TOX 2 2021-2022

- There are several acute toxic gases released from both BEV and ICEV fires: CO, HCN, HCl, HF, SO₂, NOx.
- HF represents the largest difference between EVs and ICEVs and, unlike other irritating gases, HF also has a systemic toxic effect and can be absorbed through the skin.
- Sprinklers had a large effect on HF concentration in smoke – HF "washed out", but greater mixing of gases.

Project reports: E-TOX: <u>Toxic Gases from Fire in Electric Vehicles</u>
E-TOX 2: <u>Investigation of extinguishing water and combustion gases</u>
from vehicle fires

FOI & MSB, Gasformig HF vid brand i trånga utrymmen – risker för hudupptag vid insatser 2021

Environmental consequences

- Combustion gases are toxic.
- Personal Protective Equipment (PPE) should be worn when dealing with battery fires: EN 469:2020 level 2 and breathing apparatus.
- Water run-off should be collected, especially if in a sensitive area.
 This is valid irrespective of the type of the little. of Sweden

Summary

- BEV fires are not more common nor more intense than ICEV fires. Fire duration is in the order of 60 – 90 minutes.
- Increased use of plastics in modern vehicles contributes to higher fire loads.
- Modern vehicles are larger and wider which increase fire load and probability for fire spread.
- Complete fire extinguishment of a battery pack fire may be difficult. Potential for fire re-ignition.
- A fire in a BEV is no more challenging for a sprinkler system than a fire in an ICEV.
- All fire effluents are toxic and environmental concerns independent of the type of vehicle.

- we have learned to handle them safely

Fire protection challenges

General issues

- Large interconnected multi-floor (often) spaces, above- or underground.
- Typically, low ceiling heights.
- Vehicles closely parked overall high fire load and high probability for fast fire spread.
- Accessibility problems for fire fighters.

Issues specifically related with BEV

- Final fire extinguishment may take longer time (if battery pack involved in fire).
- Fire re-ignition may occur after several hours or even days.

Fire protection measures

All common measures are valid

- Passive fire protection (to limit the spread and consequences of fire).
- Fire detection systems (to provide an early alarm).
- Smoke and heat ventilation (to help accessing the fire).
- Fire sprinkler systems (to control a fire and prevent it from spreading).
- Means for manual fire fighting (as standpipe systems to provide reliable water for the manual suppression of fire).

Measures to address new issues

- Wider parking lots (to delay fire spread).
- Personal Protective Equipment that withstands HF.
- Emergency fire fighting equipment to fight fires inside battery packs.
- Collection of water run-off to reduce the environmental impact.

Thank you for your attention!

Maria Quant

maria.quant@ri.se

Ola Willstrand

ola.willstrand@ri.se

Per Blomqvist

per.blomqvist@ri.se

Magnus Arvidson

magnus.arvidson@ri.se

Petra Andersson

petra.andersson@ri.se

Contact persons at RISE regarding the subject.

